molar absorption coefficient, $\boldsymbol{\varepsilon}$

molar decadic absorption coefficient

Absorbance divided by the absorption pathlength, l, and the amount concentration, c:

$$\varepsilon(\lambda) = \left(\frac{1}{c \ l}\right) \lg\left(\frac{P_{\lambda}^{0}}{P_{\lambda}}\right) = \frac{A(\lambda)}{c \ l}$$

where P_{λ}^{0} and P_{λ} are, respectively, the incident and transmitted spectral radiant power.

Note 1: The term molar absorptivity for molar absorption coefficient should be avoided.

Note 2: In common usage for l/cm and $c/mol dm^{-3}$ (M), $\varepsilon(\lambda)$ results in dm³ mol⁻¹ cm⁻¹ (M⁻¹ cm⁻¹, the most commonly used unit), which equals 0.1 m² mol⁻¹ (coherent SI units).

2007, 79, 371

IUPAC Compendium of Chemical Terminology

2008